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A Cognition-based networks

A Evolution of cognitive communications and networks
A New holistic concept of cognition-based networks
A Use of machine learning tools toward this vision
A Examples of application
A QoE-driven video admission control

A Context-aware handover optimization

A CARMEN: Android-based Cognitive network
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Y
SIGIrOET
Py J  SIGNET - University of Padova 2

zorzi@dei.unipd.it



DIPARTIMENTO

DI INGEGNERIA I\/I Otivati O n

DELLINFORMAZIONE

@
>

A Communication systems are becoming more and
more complex, and call for intelligent solutions

A2 New scenarios make such evolutions real

A White spaces in licensed spectrum (e.g., TV bands),
spectrum re-used by a secondary user; Self-organizing
networks in ad hoc (e.g., disaster) scenarios; Advanced
paradigms in HetNets; Massive Uncoordinated Access

A Software Defined Nets and Network Function Virtualization
A Deep learning and CUDA/GPU computing architectures

A All of these are specific cases of a more general
approach based on learning and context-awareness
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A Applying cognition is a way to deal with the
complexity and challenges of future systems

A Cognition Is already In use today in several cases

A Cognitive radios, biologically inspired networks, node
adaptation by learning, etc

A However, in order to draw the most benefit from this
approach, one needs to

A Consider all players in a more coherent manner
A Apply cognition at all network layers and end-to-end

A Apply the most advanced paradigms taken from cognitive
science
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A Mitola (2000) and Haykin (2005) actually gave a
very general definition of the cognitive paradigm

A They spoke about the essence of cognition,
iIncluding

A Intelligent observation, learning, decision-making,
emergent and collaborative behaviors

A It s clear that what has happened in this field since
then has only scratched the surface

A Cognitive networking in a broad sense remains an
exciting and largely unexplored research field
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A Cognitive radios: frequency-agile devices for
opportunistic access

A Cognitive radio networks: networks of CRs

A Cognitive networks: the cognitive approach applied
to networking layers and end-to-end
A Learning, decision-making, information sharing

A Cognition-based networks: drawing from the

most recent results in cog science & networking

A Advanced unsupervised learning, generative models, deep learning
A reconfigurable, software-defined communication techniques
A Including out-stack information (related to the environment & the user)
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A Sense: nowadays devices are crammed with
transducers / sensing apparatuses

A needs efficient data handling

A Learn: optimization algorithms can be run at
each node individually
A needs (1) efficient algos (i) harmonization
A Act: network modifies the environment
A requires convergence of multiple devices
A Can use SDN/NFV concepts & protocols
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A Supervised learning requires labeled

examples or explicit feedback about outcomes
A Suitable when this is available, and when the goal is well-
defined and known a priori
A Unsupervised has no prior knowledge
A No pre-existing model, more general

A Reveals features that are not task-specific, leading to the
emergence of a fully data-driven worldview

A Can be used in distributed optimization
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A The way we learn without an external teacher
A We build a view of the world based on data
A Generative model: probabilistic view of the world
A Background for all our cognitive activities

A Has the potential to give an agent the ability to face
and react to situations never seen before

A Can exploit huge amounts of unlabeled data

A The worldview provided is an extremely valuable
starting point for task learning (i.e., supervised)
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A So far, we have discussed learning in nodes
A When dealing with populations of agents, we
can refer to more complex phenomena, e.g.:
A Evolutionary approaches mimic natural evolution

A Emergent behaviors in agent based systems

A Intelligent behaviors may emerge from simple
entities (swarm intelligence)

A Network optimization as emergent property
A Nature has solved the scalablility problem
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A Each node of the network:

A exploits local information to achieve its goal
A shares (part of) it with its neighbors

A Self-adaptation to the environment to achieve
network wide goals

E Cognition applied to the entire network (not J

just at the PHY and MAC layers)
A Both vertically and horizontally
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Stochastic neural network with input layer symmetrically connected
with a hidden layer of feature-detectors

A (probabilistic graphical model: undirected graph)

Unsupervised learning of an internal model of the data (features or
latent causes).

Obijective function: minimize contrastive divergence (Kullback-Liebler)
between input data and (top-down) reconstruction of the data
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Hinton & Salakhutdinov, 2006,
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A key feature of cortical computation

----- > Associative areas
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Large scale simulation
Deep network 9 layers (1 billion connections)
10 million (200x200) unlabeled images

(Le et al., 2012)
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Unsupervised deep learni

Bottom-up:

A Higher layer neurons
ractivateowhen input_
Presents some specific
eatures

A Higher layer provides an
abstract representation of
input features

Top-down:

A Activating hidden layer
neurons according to their
weight andAo_ropagatlng
back toward inputs we can

enerate signals with similar
eatures of training signal
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A& Classification tasks: separate input exemplars
Into predefined classes

A Standard approach: supervised training of

classifier

A e.g., linear classifier,n e ur al net wor k,

A representative set of input signals with associated
classes

A apply classifier to new signals and look at outputs

A Classification is (often) better if classifier is
trained by using higher-layer deep network
actlvatlons as inputs in place of original signal

S}—-(J] lI_;’f
Py 3 SIGNET - University of Padova 16 zorzi@dei.unipd.it



= DIPARTIMENTO

— meme DEEP NEtworks for transfer learni

— DELLINFORMAZIONE

Moreover, the same high-level representation can be used
for learning multiple tasks by training many classifiers

Task 1 ] Task 2

Task n

N/

shared representation

—_—
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Input
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task -specific
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| deep network
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A There are many instances where learning on
a network-wide basis can be used

A Here we consider two of them, I.e.,

A Content-based video management

A Learn video features and apply this knowledge to
some useful networking task

A Context-dependent handover in HetNets

A Learn environmental features and make context-
based handover decisions accordingly
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A We propose a way to faclilitate video handling
A Proposed approach:

A Represent video characteristics in terms of rate
A Capture the relationship between rate and QoE
A Use this to determine resources needed

A Make admission decisions based on QoE

A We consider a set of video clips and apply
machine learning techniques
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Video
recognition/classification/SSIM
estimation
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A Input to the RBM: frame size only
A This Is done for a whole GoP (isolated)

A The RBM learns by extracting the latent factors of the
data distribution in the hidden layer

AThi s ninternal represent a
meaningful and abstract representation of the input
A After that, we apply a linear classifier for
recognition / classification / SSIM estimation

A Note: we must train a different linear classifier for
each case, while the RBM is trained just once for all
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A At each new video flow request, VAC invokes
RM to get the fbestoresource allocation
according to a specified policy

A RM returns the resource that can be
assigned to each video

A VAC computes the SSIM of each video with

the best compression level, compatible with
the allotted resources

A If estimated SSIM of all active videos is above the
= quality threshold the video request Is accepted
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A The optimization problem addressed by RM
IS as follows

Resource share

Utility function allotted to video ovo
FDpt — arg I'[__LFELE {T__,.-'T(]__‘? R: {F’L}} S.t. E Yo E 1
'

Rate allocation

Channel rate SSIM videos 0
vector

characteristics
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Possible utility functions

Rate fairness (RF) U, R AF,}) = [Z

SSIM fairness (SF) U, R,{F,}) = min F,(log(v,R/7,(1)))

Resource share to be allotted:

ry (1)
: Yo =
RF: ;75 (1)
1
— arg max ro(1 105 (9 < R}
P where ¢ & {ZU: (1) =
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A Poisson video requests (0.66 req./s)

A average offered load of 11 videos

A Aggregate max rate of G = 161 Mbit/s
A F*=0.95 SSIM value to reach MOS 4

55IM MIOS CQuality Impairment

> 0.99 3 Excellent Imperceptible
0.95, 0.99) - Good Perceptible but not annoying
[0.88, 0.95) 3 Fair Slightly annoying
0.5,0.88) 2 Poor Annoying

< 0.5 1 Bad Very annoying
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A Optimizing resource allocation for video
transmission Is challenging
A many numerical parameters involved
A subjective QoE issues
A high signaling exchange

A Learning-based approaches are useful to
A obtain a compact representation
A extrapolate the most significant data

A provide a framework with no need for prior models
- and/or explicit knowledge of the domain
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A In cellular telephone systems, the term
handover refers to the process of keeping a
mobile active user connected to the BS that
offers the strongest radio signal
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LongTTT HandoverFailure
_ ShortTTT PingPong
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