UL/DL Mode Selection and Transceiver Design for Dynamic TDD Systems

Antti Tölli
with Ganesh Venkatraman, Jarkko Kaleva and David Gesbert
e-mail: atolli@ee.oulu.fi

Centre for Wireless Communications, University of Oulu, Finland

2016 Tyrrhenian International Workshop on Digital Communications, Livorno, Italy
14 Sept, 2016

Dynamic TDD

- Significant load variation between adjacent cells
- Flexible UL/DL allocation provides large potential gains in spectral efficiency
- More challenging interference management

Figure: Flexible TDD frame structure

2. 3GPP TSG RAN WG1, "Study on scenarios and requirements for next generation access technologies TR 38.913," 3rd Generation Partnership Project 3GPP, www.3gpp.org, 2016
Dynamic TDD

Figure: UL-DL/DL-UL interference in Dynamic TDD

- Additional **UL-to-DL and DL-to-UL interference** associated with the dynamic TDD
- Interference mitigated by coordinated beamforming.
- More measurements and info exchange also at the terminal side
- Similar interference scenarios in underlay D2D transmission

System Model & Problem Formulation

1. slot allocation
 - Uplink
 - Downlink

- OFDM system with N sub-channels and N_B BSs, N_T TX antennas per BS
- K users each with N_R antennas

Goal: minimize the number of packets in BS/user queues via joint uplink (UL) / downlink (DL) cell mode selection, TX/RX design and resource allocation over spatial and frequency resources
Queueing Model

- Each user is associated with backlogged packets of size Q_k.
- Queued DL (UL) packets Q_k (\bar{Q}_k) of each user follows dynamic equation at the ith instant as

$$Q_k(i + 1) = \left[Q_k(i) - t_k(i) \right]^+ + \lambda_k(i) \quad (1)$$

where $t_k = \sum_{n=1}^{N} \sum_{l=1}^{L} t_{l,k,n}$ denotes the total number of transmitted packets corresponding to user k.
- λ_k represents the fresh arrivals of user k at BS b_k.
- Separate user specific queues for UL and DL traffic.
Objective

- Minimize the total number of backlogged packets in DL and UL

\[
\min_{t_k, \bar{t}_k} \sum_{k \in U} \alpha_k |v_k|^q + \beta_k |u_k|^q
\]

(2)

where \(\alpha_k, \beta_k\) are arbitrary priority weights and

\[
v_k = Q_k - t_k = Q_k - \sum_{n=1}^{N} \sum_{l=1}^{L} \log_2(1 + \gamma_{l,k,n}) \]

(3)

\[
u_k = \bar{Q}_k - \bar{t}_k = \bar{Q}_k - \sum_{n=1}^{N} \sum_{l=1}^{L} \log_2(1 + \bar{\gamma}_{l,k,n}) \]

(4)

- \(q = 1, 2, \ldots, \infty\) plays different role based on the value it assumes
 - Inherent maximum rate constraint: \(\sum_{n=1}^{N} \sum_{l=1}^{L} t_{l,k,n} \leq Q_k\)
 - Special cases (when \(Q_k > \sum_{n=1}^{N} \sum_{l=1}^{L} t_{l,k,n} \forall k\)):
 - \(q = 1\): Sum rate maximization
 - \(q = 2\): Queue-Weighted Sum Rate Maximization (Q-WSRM)

Spatial Overloading in SINR

DL SINR\(^5\)

\[
\Gamma_{l,k,n} = \frac{\left| w_{l,k,n}^H H_{b,k,k,n} m_{l,k,n} \right|^2}{\hat{N}_0 + \sum_{i \in U \setminus \{k\}} \sum_{j=1}^L |w_{l,k,n}^H H_{b,k,i,n} m_{j,i,n}|^2 + \sum_{i \in U \setminus U_{b_k}} \sum_{j=1}^L |w_{l,k,n}^H \tilde{H}_{i,k,n} \bar{m}_{j,i,n}|^2}
\]

\((5)\)

UL SINR

\[
\bar{\Gamma}_{l,k,n} = \frac{\left| \bar{w}_{l,k,n}^H H_{b,k,k,n}^T \bar{m}_{l,k,n} \right|^2}{\hat{N}_0 + \sum_{i \in U \setminus \{k\}} \sum_{j=1}^L |\bar{w}_{l,k,n}^H H_{b,k,i,n}^T \bar{m}_{j,i,n}|^2 + \sum_{i \in U \setminus U_{b_k}} \sum_{j=1}^L |\bar{w}_{l,k,n}^H \tilde{H}_{b,i,b,k,n} \bar{m}_{j,i,n}|^2}
\]

\((6)\)

\(^5\)Note that UL-DL and DL-UL interference terms in (5), and (6), respectively, include potential interference from all other-cell users. UL/DL mode selection per BS/user is handled separately via (relaxed) binary selection.
Queue Minimization with UL/DL Mode Selection

\[
\begin{align*}
\text{min.} & \quad \| \tilde{\mathbf{v}} \|_q + \| \tilde{\mathbf{u}} \|_q \quad (7a) \\
\text{s. t.} & \quad \gamma_{l,k,n} \leq \Gamma_{l,k,n} \quad \forall \ l, k, n \quad (7b) \\
& \quad \tilde{\gamma}_{l,k,n} \leq \tilde{\Gamma}_{l,k,n} \quad \forall \ l, k, n \quad (7c) \\
& \quad \sum_{n=1}^{N} \sum_{k \in \mathcal{U}_b} \sum_{l=1}^{L} \| \mathbf{m}_{l,k,n} \|_2^2 \leq x_b P_{\text{max}} \quad \forall \ b \quad (7d) \\
& \quad \sum_{n=1}^{N} \sum_{l=1}^{L} \| \bar{\mathbf{m}}_{l,k,n} \|_2^2 \leq \bar{x}_{b_k} P_{\text{max}}^{\text{UE}} \quad \forall \ k \quad (7e) \\
& \quad x_b + \bar{x}_b = 1 \quad \forall \ b, \quad x_b \in \{0, 1\}, \quad \bar{x}_b \in \{0, 1\} \quad (7f)
\end{align*}
\]

where \(\tilde{v}_k \triangleq \frac{1}{a_k^q} (Q_k - \sum_{n=1}^{N} \sum_{l=1}^{L} t_{l,k,n}) \) and \(t_{l,k,n} = \log(1 + \gamma_{l,k,n}) \)

■ Nonconvex (difference of convex) SINR constraints, and integer UL/DL selection constraints
Approximation of the SINR Constraints

- The DL SINR constraints in (7b) are relaxed as\(^6\) (UL similarly)

\[
\gamma_{l,k,n} \leq \frac{\left| w_{l,k,n}^H H_{b_k,k,n} m_{l,k,n} \right|^2}{\beta_{l,k,n}} = \frac{p_{l,k,n}^2 + q_{l,k,n}^2}{\beta_{l,k,n}}
\]

\[
\beta_{l,k,n} \geq \tilde{N}_0 + \sum_{i \in \mathcal{U}\setminus\{k\}} \sum_{j=1}^L |w_{l,k,n}^H H_{b_i,k,n} m_{j,i,n}|^2
\]

\[
+ \sum_{i \in \mathcal{U}\setminus\mathcal{U}_{b_k}} \sum_{j=1}^L |w_{l,k,n}^H \tilde{H}_{i,k,n} \tilde{m}_{j,i,n}|^2
\]

where

\[
p_{l,k,n} \triangleq \Re(w_{l,k,n}^H H_{b_k,k,n} m_{l,k,n}), \quad q_{l,k,n} \triangleq \Im(w_{l,k,n}^H H_{b_k,k,n} m_{l,k,n})
\]

- Difference of convex constraint solved via successive convex (linear) approximation (SCA)

Binary Relaxation

- Binary variables $x_b, \bar{x}_b \in \{0, 1\}$ are replaced by continuous variables $x_b, \bar{x}_b \in [0, 1], \forall b$

- Problem (7) becomes convex (for fixed receivers, at any given linearization point of the SINR constraints)

- **Sparsity must be enforced!** → Use a regularization function

 \[
 \min \| \tilde{v} \|_q + \| \tilde{u} \|_q + \psi \sum_{t=1}^{N_B} (\log(x_b + \epsilon) + \log(\bar{x}_b + \epsilon)) \quad (10)
 \]

 successively linearized as

 \[
 \min \| \tilde{v} \|_q + \| \tilde{u} \|_q + \psi \sum_{b=1}^{N_B} \left(\frac{x_b - x_b^{(i)}}{x_b^{(i)} + \epsilon} + \frac{\bar{x}_b - \bar{x}_b^{(i)}}{\bar{x}_b^{(i)} + \epsilon} \right) \quad (11)
 \]

Simulation Setup

1. slot allocation

- **Uplink**
- **Downlink**

Figure: Final UL/DL allocation for a random drop of users and traffic states

© Antti Tölli, CWC
Numerical Example

![Graph showing average queue backlog (bits) vs. arrival rate (A).]

Figure: Average number of queued bits per user with varying packet arrival rates.

The mean arrival rate across all low and high rate demand users is \((1 - \alpha)A + \alpha\beta A\).
Next Steps

- Decentralization, decoupling the problem
- Inter-carrier, inter-sector UL-DL interference
- Signalling, CSI acquisition
- Time-scale of changing UL/DL allocation?
- Impact of more practical traffic models